Using OpenACC Compilers to Run
FIM and NIM on GPUs

Mark Govett

NOAA Earth System Research
Laboratory

Background

* Developing NIM model to be highly scalable a
single source code and performance portable

— Intel SB, Xeon Phi, Kepler GPU, etc

* Plan to run NIM at 3.5KM resolution in 2014
— Require a minimum of 2000 GPUs or Xeon-Phi

— Further work to optimize communications and
compute

* First of several models projected to run on Fine-
Grain computers in 2014 & 2015

— FIM, HRRR (variant of WRF-ARW)

Goals of this Talk

* Report on our recent experience with the
openACC compilers from PGI, Cray, CAPS

— Determine ability to handle FIM, NIM codes
without code change

— Maintain performance portability to CPU, GPU,
MIC

e Compare performance to F2C-ACC

MIC & GPU Performance for NIM

10242 horizontal points, 96 vertical levels
Kepler results used the F2C-ACC compiler
Xeon Phi are from the 7110 version on TACC

The source code for these runs is the identical

— New diag code has been optimized for MIC, but not run on the
Kepler

Keplerk20x | XeonPhi

TOTAL: Main loop [19.61] [20.73]
vdmints 6.29 7.02
vdmintv 2.43 3.44
flux 1.11 1.79
trisol 0.76 0.52
force 0.64 0.93
Vdn 0.50 0.93

Diag [2.70] [1.11%]

F2C-ACC Compiler

Developed in 2008 before commercial compilers were
available
Developed for FIM and NIM
— New capabilities added as needed
— Used primarily for model dynamics
Limited Capabilities, Scope, Support
— Partial support for Fortran 90
— Shared with a few outside groups
— No attempt to conform to openACC standard
— No new development since the last workshop

Evaluate commercial compilers

— Share results, code with vendors
— Henderson, 2010: pre-OpenACC CAPS, PGl compilers
— Govett, 2013

Using the OpenACC Compilers

Simple, easy to use
Feedback by compilers was useful

Placement of directives was trivial
— Same as F2C-ACC, similar to openMP

OpenACC directives required less information
than F2C-ACC to prescribe parallelism

OpenACC compilers have more capabilities
than F2C

Directives to ldentify Parallel Regions

e F2C-ACC
— IACCSREGION (<threads>, <blocks>
[, <data movement> |
— IACCSREGION END

* OpenACC

— ISacc kernels
— ISacc end kernels

— ISacc parallel [num_gangs][num_workers][vector_length]
[data movement |

— ISacc end parallel

Directives for Loops

* F2C-ACC
— IACCSDO [PARALLEL] [VECTOR]

* OpenACC

— ISacc loop [gang] [worker] [vector]

Directives for Data Movement

* F2C-ACC
— IACCSREGION, !ACCSDATA

* OpenACC

— 1Sacc parallel, !Sacc data !Sacc update

Additional Directives

* F2C-ACC
— IACCSROUTINE
— IACCSTHREAD

* OpenACC

— ISacc routine
— ISacc async
— ISacc cache
— ISacc declare
— ISacc wait

Standalone Test Cases

5 tests from FIM, NIM, WRF

— Chuity FIM Dynamics
— Trcadv FIM Dynamics
— WRF-PBL WRF Physics

— Momtum FIM Dynamics
— Vdmintv NIM Dynamics

Tests run on Titan using F2C-ACC, PGl & Cray

OpenACC directives used

— ISacc kernels

— ISacc parallel [num_gangs] [num_workers] [vector_length]
— 1Sacc loop [gang] [vector]

Share results with vendors

— Collaborate on tuning

Bitwise Exact Results

* Important to validate the parallelization
— Speeds parallelization, leaves no doubt with scientists

e Correctness may be needed for long simulations

 Compiler options needed to generate correct results
— Can be turned off for speed, but essential for correctness

F2C-ACC w/ Intel, CUDA compiler

Cray, PGl compilers

Diff stats for tr3d_ref vs. tr3d:

tracer= 1

0 diffs were found of a possible 655488
tracer= 2

0 diffs were found of a possible 655488
tracer= 3

0 diffs were found of a possible 655488
tracer= 4

0 diffs were found of a possible 655488

Diff stats for tr3d_ref vs. tr3d:

tracer= 1

1551 diffs were found of a possible 655488
max diff= 2.4414063E-04 at k,ipn= 64 3285
arrl,arr2= 1996.102 1996.103
number of decimal digits= 6.9
max relative diff= 2.1192625E-07 at k,ipn= 15 1654
arrl,arr2= 288.0019 288.0018

number of decimal digits= 6.7
average number of matching digits for points with diffs= 7.0
tracer= 2

10807 diffs were found of a possible 655488

FIM Dynamics: CNUITY

!ACCSREGION(<64>,<10242>,<flxhi:none,local>) BEGIN
!Sacc parallel num gangs(ihe-ips+1l) vector length(64) private(flxhi)
IACC$DO PARALLEL(1)
!Sacc loop gang
do ipn=ips,ihe
IACCS$DO VECTOR(1)
!Sacc loop vector

do k=1,nvl
flxhi(k) = vnorm(k,edg,ipn)*dp edg(k,edg,ipn)
massfx(k,edg,ipn,nf) = 0.5*((vnorm(k,edg,ipn) +
abs(vnorm(k,edg,ipn)))*delp(k,ipn) - &
(vhorm(k,edx,ipx) + abs(vnorm(k,edx,ipx)))*delp(k,ipx))
enddo
enddo

!Sacc end parallel
IACCSREGION END

* FIM has 64 vertical levels, 10242 horizontal points / GPU
* One horizontal dimension— ipn

* One vertical dimension - k

FIM Dynamics: CNUITY
Total (% slower)

325, 514 3, 1024 3552 6114
PGl: parallel 616, 993 463 798 159, 1286 13256 (116%)
Cray: parallel 682, 1739 745 964 43, 1893 4031 10097 (65%)
Cray: fast32 555, 979 432 748 37, 1322 3903 7976 (30%)

 Compiler versions & settings used

— CRAY V8.1.9: -03 -h noomp,acc -em -ef -eZ —ra
» -fast_addr option uses 32 bit addressing for array references

— PGIV13.7.0: -03 —acc —Minfo=accel

e -ta=nvidia:cuda5.0 sometimes yielded 10-20% faster runtimes

 Kernel execution times for Kepler K20x
— Does not include data movement l

 Code modified for PGI due to a bug with handling “private” (GPU
local) variables resulted in a significant performance penalty

* Both !Sacc parallel and !Sacc kernels were tried
— ISacc parallel almost always faster than !Sacc kernels

FIM Dynamics: TRCADV

64 vertical levels, 10242 horizontal points

Computation time only — does not include data
movement

Total(% slower)

F2C-ACC 1031 2173
PG 1615 885 871 3371 (55%)
Cray 2895 757 1233 4885 (124%)

Cray-fast32 1205 607 1076 2888 (32%)

Code Example: WRF-PBL

!Sacc parallel num gangs((ite-its+1)/64+1) vector length(64)

do k = kts,kte lvertical dimension loop
!Sacc loop gang vector
do i = its,ite 'horizontal dimension loop
zg(i,k+1l) = dz8w2d(i,k)+zqg(i,k)
enddo
enddo

|
do k = kts,kte
!Sacc loop gang vector
do i = its,ite
za(i,k) = 0.5%(zq(i, k)+zq(i, k+1))

dzq(i,k) = Zq(ilk+1)_zq(ilk)
del(i,k) = p2di(i,k)-p2di(i,k+1)
enddo
enddo

* Typical loop structure for WRF physics

Apply block (gang) and thread (vector) level parallelization
to a single dimension for NIM

— Dependence on “k” prevents parallelization

WRF Physics: PBL
mmmmmm

2447
Cray 250 281 [740] [1090] [699] 87 3147
PGl 351 [301] [829] 652,BUG [731] 84 NA
Cray: fast 193 202 [613] [780] [566] 75 2494

 WRF Version 3.3 code with minor changes
— F2C-ACC has limited Fortran support
— To get bitwise exact results compared to the CPU

* calculations with **2 modified to multiply factors directly

e Square brackets indicate more than one kernel
was used

Why are the openACC Compilers Slower?

 Use of Memory: Local, Shared, Global, Registers?

— Significant benefit using private (thread local) memory observed by all
compilers

— Minimal benefit using shared memory (F2C), did not test with Cray, PGl
— 10-30% more registers used in Cray, PGl than F2C-ACC

e Parallelism: Increasing the number of threads / block from 64 — 128

— 32% performance improvements for F2C-ACC routines observed

— Degraded performance for Cray, PGl compilers observed
* No combination of gangs, workers, vectors yielded benefit

Compiler Cnuityl Cnuity2 Cnuity3 Cnuity4 cnuity5 % benefit
- threads

F2C-64 1384

F2C-128 325, 514 295 421 13, 1024 3552 32% faster
Cray — 64 555, 980 431 750 13, 1322 3895

Cray — 128 ,1272 457 974 , 1419 18% slower
PGI—-64 616, 993 463 798 159, 1286 8941

PGl —-128 , 1094 480 977 , 1403 11% slower

Summary

Goal is to have performance benchmarks of the FIM
and NIM in the next few months

— Both physics and dynamics if possible

OpenACC compilers are the future for GPU
programming

— Standard is sufficient for our applications

— Easy to use, parallelization is straightforward
— No code changes required for parallelization

* Except for the PGl handling of “private” variables

We will work with vendors to improve performance
— Modify our use of the openACC directives
e are we missing something?

— Provide stand-alone tests to vendors on our website for
profiling and analysis

